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A method combining machine learning and regression analysis to auto-
matically and intelligently update predictive models used in the Kansas
Department of Transportation’s (KDOT’s) internal management system
is presented. The predictive models used by KDOT consist of planning
factors (mathematical functions) and base quantities (constants). The
duration of a functional unit (defined as a subactivity) is determined by
the product of a planning factor and its base quantity. The availability of
a large data base on projects executed over the past decade provided the
opportunity to develop an automated process updating predictive mod-
els based on extracting information from historical data through machine
learning. To perform the entire task of updating the predictive models,
the learning process consists of three stages. The first stage derives the
numerical relationship between the duration of a functional unit and the
project attributes recorded in the data base. The second stage finds 
the functional units with similar behavior—that is, identifies functional
units that can be described by the same shared planning factor scaled in
terms of their own base quantities. The third stage generates new plan-
ning factors and base quantities. A system called PFactor built on the
basis of the three-stage learning process shows good performance in
updating KDOT’s predictive models.

Planning and scheduling transportation projects is an interesting and
important subarea of transportation engineering. Construction proj-
ect planning and scheduling can be viewed in two stages. The first
stage involves planning and scheduling of project development and
engineering, a task that is typically the responsibility of transporta-
tion agencies. This stage deals with planning and scheduling project
preparation going on in the agency itself before release of the proj-
ect for bid. It stresses the allocation of resources within the agency.
The second stage involves planning and scheduling of project exe-
cution and construction, a task that is typically the responsibility of
the contractors. This paper deals with the first stage of planning and
scheduling transportation projects.

The accuracy of predicting duration required by activities of a
project will influence to a great extent the effectiveness of planning
and scheduling the project because failure to manage time properly
will result in schedule slippage and cost overruns. But most predic-
tive models of activity duration for planning and scheduling of
transportation projects by state departments of transportation are
based on experience in a relatively ad hoc manner and often do not
accurately reflect the agency’s current business practices and
requirements. Establishing new predictive models for activity dura-
tion in order to improve planning and scheduling is of concern to
state departments of transportation.

Predictive models are mathematical relations. Manually updating
predictive models is theoretically possible but practically infeasible
because of the complexity of this real-world engineering problem.
It not only uses both numeric and symbolic data types, but also is
multidimensional and nonhomogeneous. This paper presents a
method combining machine learning and regression analysis to
automatically and intelligently update predictive models used in
determining the durations of transportation projects.

First, this paper briefly outlines the method of planning and
scheduling transportation projects. Second, it discusses the predic-
tive models to be updated. Then, following a brief review of the
machine learning methods, the method combining machine learning
and regression analysis is presented. Finally, the performance of the
PFactor system, built using this method, is given.

PLANNING AND SCHEDULING

The Kansas Department of Transportation (KDOT) manages many
types of transportation projects. Generic planning templates are
available for typical project types such as bridge replacement, new
road construction, and pavement overlay. To plan and schedule a
transportation project in its management network, KDOT follows
the steps shown in Figure 1.

For a new transportation project, the project statement is given
to a planner. First, the planner analyzes the transportation project
according to its project statement, identifying all activities that
must be performed in order to complete the project. The planner
chooses a generic template that most closely matches the project
type, establishing an activity network for the project. Next, the
duration of each activity in the project is estimated according to the
predictive models stored in the management system. Finally, a
complete plan and schedule are generated either by forward or
backward pass calculation (1).

For a typical template, an activity network flow chart is used and
the critical path method (1) is adopted. Figure 2 shows the activity
network flow chart of a generic template suitable for a simple bridge
replacement project.

The basic parts of the management network for a project are work
phases, events, and activities. Work phases are made up of events
and activities. Events are either milestones or border check points
(less-significant milestones). The components of the management
network are shown in Figure 2. For instance, the utility work phase
comprises the events of UTILP (utility plans), UTAGR (utility
agreement complete), and UTCOM (utility adjustment complete),
and the activities of UTENG (utility engineering) and UTADJ (util-
ity adjustments). The milestones and border check points are the
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FIGURE 1 Process of managing a project.

beginning or ending of an activity and mark a particular point in
time for reference or measurement. They do not take any elapsed
time in planning and scheduling.

Activities are associated with time, and time is their important
factor. An activity can start when all predecessors to that activity are
complete. For example, the activity of PS&E (plans, specification,
and estimates) in Figure 2 can start only when its predecessors of
UTADJ (utility adjustments), FIDES (final design), and RWCDM
(right-of-way condemnation) are finished.

An activity consists of subactivities called functional units. As
indicated in Table 1, the activity of DSSUR (design surveys)
includes the functional units of FSURV (field survey), DESUP
(design support), DMATL (district materials), and MATLS (mate-
rials). The functional units of an activity can be performed at 
the same time, and their durations may be different. Therefore, the
duration of an activity is determined by the functional unit whose
duration is the longest. The total duration of a project is determined
by the summation of the time taken by the activities on critical path
(1). The critical path is defined as the longest continuous chain 
of activities through the network schedule that establishes the
minimum overall project duration.

It is clear that the more accurate the duration prediction of func-
tional units, the more accurate the duration prediction of activities.
Consequently, improved duration prediction results in more effective
planning and scheduling.

PREDICTIVE MODELS

The duration of functional units of a project strongly depends on the
attributes of the project. (The approach described does not explic-
itly consider the interplay between cost and duration, reflecting
KDOT practice. Further work addresses this issue but is beyond the
scope of this paper.) The attributes of a project include road length,
number of lanes and bridges, and location of a project. The attrib-
utes used in describing a project in KDOT’s data base system are
given in Table 2, which indicates that a project has many attributes
and that the attributes are of mixed types—that is, both symbolic and
numeric. In terms of project attributes, the duration of a functional
unit can be described as

where d denotes the duration of the functional unit, and f is a math-
ematical function of attributes. However, instead of all attributes in
Table 2, in general, only several of those attributes influence a par-
ticular functional unit. To establish the predictive model for the
duration of a particular functional unit, the experts in planning and
scheduling, drawing on their experiences, determine the following:

d f= { } ( )attributes 1

• What attributes influence the duration of the particular func-
tional unit? That is, what attributes are the significant independent
attributes on which the duration of the functional unit depends? Dif-
ferent functional units may have different significant attributes.

• How do the attributes determine the duration of the particular
functional unit? That is, what is the numerical relationship be-
tween the significant attributes and the dependent duration of the
functional unit?

KDOT manages many transportation projects of a variety of
types. Many templates are stored in the management system to
classify the various projects. There are hundreds of project type
associated functional units in the management system. Individu-
ally predicting the duration of each functional unit would lead 
to an excessive number of models. However, engineers in KDOT
observed that some functional units behave similarly, with dura-
tions differing only by a constant; that is, those functional units
have the same significant attributes and those significant attrib-
utes influence the duration in the same way except for magnitude.
This can be accounted for in the predictive model by splitting the
duration of a particular functional unit into two parts, B and p,
with the duration of the functional unit measured by the product
of B and p.

where B is a constant related to the functional unit and independent
of the attributes, and p is a function of the significant attributes. B
and p are called a base quantityand a planning factor, respectively,
in KDOT’s planning and scheduling management system. In other
words, predictive models consist of planning factors and base quan-
tities. The duration of functional units is proportional to their corre-
sponding planning factors with the base quantities as the constants
of proportionality.

The introduction of planning factors in KDOT’s planning and
scheduling system allows the system to predict the duration of many
functional units in terms of a small number of planning factors.
Some functional units even in different templates may share the
same planning factor by having their own base quantities.

The preceding description applies to the predictive models in use
at KDOT. However, these models have become outdated and no
longer accurately reflect the agency’s current business practices and
requirements. There is thus a need to update the predictive models.
A large data base of planning and scheduling information is avail-
able on projects executed over the past decade. It would be useful for
KDOT to have an automated method of updating the predictive mod-
els on the basis of historical data. Such an automated approach could
then be used continuously to incorporate information contained in
recent additions to the data base.

d B p= × ( )2



FIGURE 2 Activity network flow chart of generic template.
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TABLE 1 Functional Units Contained in Activities in Template of 3R/Bridge Replacement

THREE-STAGE PROCESS OF UPDATING
PREDICTIVE MODELS

To allow the updated predictive models to be integrated easily with
KDOT’s existing planning and scheduling system, it is preferred
that the format of predictive models remain unchanged, which
means keeping predictive models in the same form of planning
factors and base quantities.

The analysis described in this paper is limited to linear estimates,
reflecting KDOT practice. This limitation prevents the use of expo-
nential forms used in many areas of construction to reflect scale
economies (or diseconomies). Current research is under way to
allow other than linear forms, but that work is beyond the scope of
this paper.

Each model is constructed to predict the duration of a functional
unit. Therefore, the updating process begins at the level of functional
units. The updating process consists of the following three stages:

• Analyzing the data set of each functional unit,
• Grouping functional units with similar behavior, and
• Generating new planning factors and base quantities.

The most difficult part of updating predictive models is the first
stage, that is, finding the numerical relations between the functional
unit duration and its significant attributes. The difficulties come
from the following characteristics of the problem:

1. Attributes are of mixed types, symbolic and numeric.
2. The numerical relations between duration and attributes are

multidimensional and nonhomogeneous: different relationships
hold in different subsets of the data set of the functional unit, which
are expressed as region-equation pairs

where

i = region number,
Ri = description of region i, and
fi = numerical relation of region i.

To ensure that the updated models are in a form that is clear to the
users, the data analysis is guided by knowledge specific to the plan-
ning and scheduling problem area. This domain knowledge is

R d fi i: { } ( )= attributes 3
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TABLE 2 Attributes Related to Planning Factors

derived largely from the existing models, which encode the exper-
tise of planners and schedulers. The important restrictions used in
guiding the data analysis include (a) the function describing each
region is limited to linear functions as discussed at the beginning of
this section, and (b) region boundaries are solely dependent on
symbolic attributes. Therefore, the expected forms of numerical
relationships can be expressed by

where a1, a2, . . . , am are numerical attributes; and ci0, ci1, ci2, . . . , cim

are region-related constants. Different regions may have different
significant attributes.

3. Significant attributes are unknown before data analysis. That
is, it is unknown before data analysis what symbolic attributes
should be used in region descriptions and what numerical attri-
butes should be used in numerical equations. When many attrib-
utes are present, choosing the most significant attributes is a 
computationally intensive task, even if a linear function of the 
significant attributes in each region is required.

These problem characteristics preclude a straightforward appli-
cation of traditional statistical regression analysis. Traditional sta-
tistical regression analysis must assume a model a priori (unlike

R d c c a c a c ai i i i i mm
: . ( )= + + + . . +

0 1 21 2 4

Characteristic 3 just given). It requires variables of one type
(unlike Characteristic 1), and also requires that the numerical rela-
tions be homogeneous, that is, the same relationship is true over
the entire domain (unlike Characteristic 2).

In addition, the second and third stages of updating predictive
models are time-consuming and computationally expensive because
of the large number of functional units. Manually updating predic-
tive models is theoretically possible but practically infeasible. For
these reasons, the approach combining machine learning and regres-
sion analysis is applied to update predictive models intelligently and
automatically.

COMBINATION OF MACHINE LEARNING 
AND REGRESSION ANALYSIS

Machine learning is the subfield of artificial intelligence con-
cerned with the design of automatic procedures able to learn from
training cases. Since the early 1950s when Turing (2) proposed
this application for computers, machine learning from examples
has been an area of research (3). Since the 1980s, machine learn-
ing has made substantial progress, and various machine learning
methods have been proposed. They can be classified into five
paradigms.
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FIGURE 3 Tree representation of region-equation pairs.

The first paradigm uses decision rules, decision trees, or similar
knowledge representations. One of the successful algorithms in this
paradigm is a tree-based method named C4.5 developed by Quinlan
(4). A limitation of these methods is their requirement of discrete
values for attributes. When the predicted decision is in the form of
ordered continuous numeric values instead of finite classes, the pro-
posed algorithms include CART (constructing regression trees) and
M5 (generating model trees) (5,6).

The second paradigm is case-based or instance-based learning.
Rather than extracting from the examples some abstract such as
trees and storing this structure in memory, these methods store
instances or cases in memory, and classify unseen cases by referring
to similar remembered cases. The group contains methods such as
nearest-neighbor algorithms (7), k-nearest-neighbor algorithms (8),
and average-case analysis (9).

The third paradigm is neural networks. They represent knowledge
as a multilayer network of threshold units that spreads activation
from input nodes through internal units to output nodes. Therefore,
the knowledge, such as mathematical functions, hidden in the data
is not explicitly represented. A comprehensive presentation of
various neural networks is given by Langley and Iba (10).

The fourth paradigm is genetic algorithms, which was derived
from the evolutionary model of learning (11). Genetic algorithms use
the Darwinian principle of “survival of the fittest.” A genetic classi-
fier is composed of a set of classification elements that replicate and
mutate to form new generations. The more successful elements pro-
duce variants of themselves and proliferate, whereas elements per-
forming poorly are discarded. BEAGLEs outlined elsewhere (11) are
the example systems in this group.

These four paradigms typically attempt to improve the accuracy
of classification and prediction. The fifth paradigm concerns
numeric law discovery. Systems such as ABACUS (12) and IDS
(13) were developed from the BACON algorithm (14), which was
designed to discover scientific laws on the basis of empirical data
evidence. BACON systems attempt to find an invariant based on the
variables given as input in order to build the model iteratively. But
the BACONs appear better able to explain historical laws with arti-
ficial data than to discover new ones. A critical review of these
methods can be found elsewhere (15). Another system, KEPLER,
was suggested by Wu and Wang (16). These systems are domain-
independent but have requirements for data bases such as small size,
free of noise, and one function covering whole domain space.

The particular task at hand of updating predictive models stresses
not only the improvement of prediction accuracy for new cases, but
also the explicit representation of knowledge hidden in data as math-

ematical functions. To reach these two goals, a three-stage learning
algorithm is used.

The first-stage learning process is to find the relationship between
duration and attributes. Because of the difficulties mentioned
before, the algorithm combines machine learning techniques and
statistical analysis to complete the learning efficiently.

This algorithm uses a tree-based model (called M-model tree) as
its knowledge representation of region-equation pairs. This knowl-
edge representation fits the application domain and is able to
describe clearly hidden relationships as shown in Figure 3. Region
descriptions are expressed by the nodes and arcs of the tree. Regional
numerical relationships are expressed by the linear equations in the
tree leaves.

The algorithm starts by dividing the data set into training and test-
ing sets. The training set T is used for building an M-model tree. The
testing set is used for assessing the M-model tree and controlling
pruning.

The first step of building an M-model tree is to compute the 
standard-deviation (17) of the target values of the cases in T that is
treated as a measure of error. Unless T contains very few cases or its
measure of error is less than a threshold, T is split into two or more
subsets Ti on the basis of one of the symbolic attributes in order to
make the training cases in the subsets more homogeneous. The 
criterion to select an attribute as a node of the M-model tree is 
evaluated by the expected error reduction (5,6)

where SD(T) denotes the standard deviation of the set of training
case T, and SD(Ti) denotes the standard deviation of the subset of
training cases Ti. The algorithm uses a greedy search to choose the
symbolic attribute that maximizes the expected error reduction.
This process is repeated on the subsets until either every subset
contains few cases or the error measure is less than a threshold.
Only symbolic attributes not used before can be selected for the
current node.

Multivariate linear models are constructed for the cases at each
node of the M-model tree, using standard regression analysis (17).
However, instead of using all numeric attributes in the standard
regression analysis of each node, the numeric attributes used in the
equation of a node are restricted to the numeric attributes inherited
from its parent node.

After each linear model is obtained, it is simplified by eliminat-
ing numeric attributes to minimize its weighted standard deviation.

∆ error SD T SD TiT

Ti= −( ) ( ) ( )∑ 5
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FIGURE 4 Results of first stage of learning process.

Weighted standard deviation of a node is defined as Σ (Ti /T) SD(Ti)
after a symbolic attribute is selected for the node. This algorithm
uses a greedy search to remove attributes whose elimination
decreases the weighted standard deviation. In some cases, the algo-
rithm may remove all numeric variables, leaving only a constant at
the leaf.

In the process of building the M-model tree, only training cases
are used. Testing cases are used to prune the M-model tree in order
to simplify the tree to give better prediction without overfitting.
Each nonleaf node of the model tree is examined, starting just above
the leaves after the M-model tree is built up. The algorithm chooses
as the final model for this node either the simplified linear model or
the model subtree, depending on which has the lower error estimate
on the testing data. If the linear model is chosen, the subtree at this
node is pruned to a leaf.

The algorithm just described is applied to all subdata bases of func-
tional units. The completed first stage generates a forest consisting of
M-model trees as shown in Figure 4.

In the second stage of learning, the M-model trees are compared
to figure out which trees are similar so that their corresponding func-
tional unit can be described by the same planning factors. Two trees
are similar if

• The tree structures are the same: if, tree leaves are in one-to-one
correspondence, the attributes used in corresponding nodes are the
same, and the attribute values in the corresponding arcs are the same.

• The numeric equations in corresponding leaves are propor-
tional, that is (see Figure 3)
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• The ratios of the proportionality of equations are constant,
that is,

The third stage of learning divides the trees in groups on the basis
of their similarities. For each group, one tree is selected as the pri-
mary tree. The ratio B of a tree to the primary tree is the base quan-
tity for the functional unit corresponding to the tree. The planning
factor for the group is the average of the trees divided by their
corresponding base quantities.

SYSTEM PERFORMANCE

Using the algorithm discussed previously, a system called PFactor
has been implemented. The performance of the system is discussed
here using two example cases, one consisting of an artificial data set
and one consisting of an actual engineering data set.

The first case simulates the real project data base with the data
built from known functions with a known noise level. The case is
used to show PFactor’s whole learning process deriving planning
factors and base quantities from data. This data set is divided into
three subdata sets, each of which consists of 200 examples. Every
example has 10 independent variables x1, . . . , x10 and one depen-
dent variable y. The data were generated from the following models
by Matlab:

Take x1, . . . , x5 symbolic independent attributes. The discrete
values of these attributes are distributed evenly, that is,

P x Y P x N
P x T P x F
P x E P x W
P x R P x S P x T
P x A P x B P x C

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

2 2

3 3
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5 5 5

1 2
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1 2
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= = = = = =
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/
/

/
/

e e e1 2 3 7= = = constant ( )
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FIGURE 5 Tree structure of planning factor in second example.

Take x6, . . . , x10 numeric independent attributes that have values
in the range of 0 to 1. Let Z, introduced noise, be independent of x1,
x2, . . . , x10 and normally distributed with mean 0 and variance 2.
Then the first subdata set implies

The second subdata set implies

The third subdata set implies

The first two subdata sets behave similarly. They can be described
by the same region-equation pairs. If the equations of the first sub-
data set are selected, the second subdata set should be described by
the first model multiplied by the constant 2. The output results show
that there are two planning factors. The first planning factor is

The second planning factor is

where pfstands for planning factor. The first subset can be described
by planning factor 1 and base quantity 1; the second subset can be
described by planning factor 1 and base quantity 2.10; the third sub-
set can be described by planning factor 2 and base quantity 1. Those
are the results one would expect.

The second case is a real engineering data set. This case is used
to show that the updated predictive models generated by PFactor
provide better duration prediction than the existing models. The per-
formance of duration prediction is measured by the percentage devi-
ation, which is defined as the average over the testing cases of the
ratio of the residual to the target duration value.

To simplify this case, the data set was selected to modify only
planning factor No. 18. The data set consists of 179 examples of
functional unit RWAPP (right-of-way appraisal) from three project
templates. The existing models for duration prediction use the plan-
ning factor No. 18 and base quantities (equal to 10) for this func-
tional unit in the templates. Therefore, only one model tree and one
base quantity should be generated. When the data set is generated
from the master project data base, domain engineers use the domain
knowledge to exclude the attributes irrelevant to duration of the
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functional unit. In this case, nine independent attributes are left. Five
of the attributes are symbolic, and four are numeric:

Symbolic: 〈US_81〉, 〈Lanes〉, 〈Urban_ind〉, and 〈Util_reloc〉
Numeric: 〈Length〉, 〈Bridges〉 , 〈Tracts〉 , 〈Tracts_condem〉 , and
〈Tracts_reloc〉

PFactor generates the tree as shown in Figure 5. The tree shows
that only two symbolic attributes and two numeric attributes sig-
nificantly affect the duration. The significant symbolic attributes
are selected by the error reduction, and the insignificant numeric
attributes are eliminated by the weighted standard deviation.

The tree is generated as follows. At the root node, PFactor cal-
culates the error reduction of all symbolic attributes. It finds that the
attribute 〈Util_reloc〉 gives the maximum error reduction, therefore
the attribute 〈Util_reloc〉 is used in the root node. Next, the algo-
rithm calculates the weighted standard deviation and finds that no
numerical attributes reduce the weighted standard, so no numerical
attributes are eliminated. All numerical attributes will be used in its
child nodes. For the No branch of 〈Util_reloc〉, PFactor again cal-
culates the error reduction of all remaining symbolic attributes and
selects 〈US81_ind〉. At the node 〈US81_ind〉, the algorithm calcu-
lates the weighted standard deviation and finds that the attributes
〈Bridges〉, 〈Tracts_condem〉, and 〈Tracts_reloc〉 reduce the weighted
standard deviation, so those attributes are eliminated and only the
attributes 〈Length〉 and 〈Tracts〉 are used in its child nodes. At the
leaf level, no weighted standard deviation can be obtained, so
numerical attributes are further eliminated only when their elimi-
nation does not significantly influence the standard deviation. For
example, on the branch 〈US81_ind〉=East, the algorithm finds that
eliminating the attribute 〈Tracts〉 influences the standard deviation
within a preset threshold of 15 percent, therefore the attribute
〈Tracts〉 is eliminated and only the attribute 〈Length〉 remains. This
model tree does not continue growing beyond this point because the
remaining symbolic attributes 〈Lanes〉 and 〈Util_reloc〉 do not have
enough examples in one of their branches to allow further splitting.
The other branches are grown down to leaves in a similar manner.
PFactor also tries to prune the tree, but in this case the results show
that it is unnecessary. According to the tree in Figure 5, the derived
new planning factor is

if Util_reloc No and US81_ind East,
Length

if Util_reloc No and US81_ind West,
Length

if Util_reloc Yes,
Tracts_condemned

= =
= +

= =
= 6.75 + .75

=
= 7.33 + .64

pf

pf

pf

83 89 7 19

6 8

7 4

. . *

*

*
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The base quantity is 1. Comparing the old and new predictive
models, the percentage deviation of the new predictive models is
50.7 percent, while the percentage deviation is 67.5 percent using
the old planning factor. This example shows wide deviation for both
models, but the new model does improve the percentage deviation
of the duration prediction by 25.4 percent based on the current data
quality.

The percentage deviation 50.7 percent of the new predictive mod-
els is still high because of the noise introduced by the method of
drawing the data set from the master data base. An example of such
noise is the fact that the actual duration is obtained from the data
base by the following calculation:

If a functional unit was suspended for some time, the calculation
does not exclude the time when no work was done on the functional
unit. This results in the duration of the functional unit used to update
the models being greater than the actual duration. On the other hand,
the more people working on a project, the shorter the duration.
When different numbers of people work on a functional unit, the
functional unit will have different durations based on the method of
drawing data Equation 14. However, duration obtained from the
data base does not include the information on how many people
work on functional units of a project. In other words, inconsistent
duration units degrade the quality of the data set. Better predictive
models are expected to be obtained if the quality of data sets is
improved.

The further work is focusing on two aspects of obtaining better
predictive models: cleaning the data sets to reduce noise and
improve quality, and relaxing the restriction to linear models.

CONCLUSION

The PFactor system built up on the algorithm discussed in this paper
is able to update automatically the predictive models of planning
factors and base quantities used by KDOT using historical data. The
predictive models updated by PFactor improve the prediction accu-
racy over the existing models. This improvement was achieved even
though serious difficulties were encountered concerning data qual-
ity. The developed technique for updating predictive models based
on information extracted from machine learning can be applied
broadly to improve prediction.

duration = −end_date start_date ( )14
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